Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is
11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int n = triangle.size();
if (!n) return 0;
int *sum = new int[n];
sum[0] = triangle[0][0];
for (int i = 1; i < n; ++i) {
for (int j = i; j >= 0; --j) {
if (j != 0 && j != i) {
sum[j] = min(sum[j - 1], sum[j]) + triangle[i][j];
}
else if (j == i) {
sum[j] = sum[j - 1] + triangle[i][j];
}
else {
sum[j] = sum[j] + triangle[i][j];
}
}
}
int m = sum[0];
for (int i = 1; i < n; ++i) if (sum[i] < m) m = sum[i];
delete[] sum;
return m;
}
};
No comments:
Post a Comment